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Abstract
The goal of this project is to use optimization based con-
trol algorithms to simulate the landing of the second
stage portion of the SpaceX Starship rocket on Mars.
The Starship’s dynamics were modeled to simulate a
rocket landing using a Model Predictive Controller (MPC).
Varying initial conditions and environmental disturbances
were tested to ensure robustness.

See the video presentation here:
https://youtu.be/lYbNoOgsdFc

1 Background
The idea of traveling to Mars has captured humanity’s
imagination for ages. In recent years, SpaceX has made
headlines with its ambitious goal of bringing humans
to Mars with its rocket, Starship. The rocket modeled
in this report uses Starship’s specifications, which are
shown below.

Starship Specifications
Height Diam. Dry Mass Main Thrust Side Thrust
50 m 9 m 120,000 kg 14.4 MN 146 kN

The modeled rocket has 6 Raptor engines, each capa-
ble of outputting 24,000 kN of thrust. To account for
side thrust, two of SpaceX’s Draco engines were used
on each side.

2 Dynamic Model
Eq. 1-6 below are nonlinear equations which govern the
states of the modeled rocket, where θ̇ and ω̇ are the angu-
lar velocity and acceleration about the primary vertical
axis, respectively; ḣ and v̇ are the vertical velocity and
acceleration in the positive z axis, respectively; ẋ and v̇x
are the horizontal velocity and acceleration in the posi-
tive x axis, respectively.

θ̇ = ω (1)

ω̇ =
L

J

[
FTH

4
− FTL

2

]
(2)

ḣ = v (3)

v̇ =
FEcos(θ) − FTHsin(θ) − FTLsin(θ)

m
− g (4)

ẋ = vx (5)

v̇x =
−FEsin(θ) − FTHcos(θ) − FTLcos(θ)

m
(6)

Figure 1: Rocket Schematic

2.1 Non-Linear Discretized Equations
To simulate the rocket, the equations of motion are dis-
cretized and the small angle approximation (cos(θ) =
1, sin(θ) = θ) is used. See Eq. 7-12.
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θ(t+ 1) = θ(t) + Ts ∗ ω(t) (7)

ω(t+ 1) = ω(t) + Ts ∗
L

J
[
FTH(t)

4
− FT L(t)

2
] (8)

h(t+ 1) = h(t) + Ts ∗ v(t) (9)

v(t+ 1) = v(t) +
Ts
m

[−FE(t)

− FTH(t) ∗ θ(t) − FT L ∗ θ(t) −mg] (10)

x(t+ 1) = x(t) + Ts ∗ vx(t) (11)

vx(t+ 1) = vx(t)+

Ts
m

[
− FE(t) ∗ θ(t) − FTH(t) − FT L(t)

]
(12)

2.2 Linearized Discretized Dynamics
To improve computation speed, linearized dynamics were
used in the MPC trajectory tracking algorithm. The Ja-
cobian method was used to linearize the dynamics around
the equilibrium point zeq = [0, 0, 0, 0, 0, 0], where the
corresponding inputs to ensure a stable equilibrium point
are ueq = [mg, 0, 0]. This equilibrium point represents
the target landing state, where the rocket is on the ground,
stationary, and vertically aligned. After linearization, the
dynamic formulation in Eq. 13 was found, with the ma-
trices defined in Eq. 14 and 15.

2.3 Environmental Disturbances
To test the robustness of the algorithm, constant force
disturbances were added to the simulation to push the
rocket off course. Horizontal forces up to 50 kN were
tested. The rocket simulation presented in the results
section incorporates a crosswind of 11 mph (4000 N hor-
izontal force) while landing.

zk+1 = Azk +Buk + C (13)

A =



1 Ts 0 0 0 0
0 1 0 0 0 0
0 0 1 Ts 0 0
0 0 0 1 0 0
0 0 0 0 1 Ts
0 0 0 0 0 1

 , zk =



θk
ωk

hk
vk
xk
vxk

 (14)

B =



0 0 0

0 TsL
4J −TsL

2J
0 0 0
Ts
m 0 0
0 0 0

0 −Ts
m −Ts

m

 , uk =

 FEk

FTHk

FTLk

 , C =



0
0
0
−g
0
0


(15)

3 Constraints
To correctly model the rocket landing, it was simulated
at an initial height of 1500 m traveling downwards at 300
m/s. The rocket started at an initial angle of 0 degrees
off its primary axis and horizontal offset 50 m from its
landing position.

The following limits were applied to the controller. The
rocket was required to be angled between -2 and 2 de-
grees and have a rotation no more than 10 rad/s. Addi-
tionally it could not travel faster than 500 m/s vertically
or faster than 100 m/s horizontally.

Instead of landing on a target ship, the rocket was set to
land on a 0.4 m diameter pad on the ground. To ensure
a proper landing the rocket would have to land within
1 degree off vertical with a rotation of ≤ 1 deg/s. The
rocket would have to make a soft landing and be within
0.2 m in height of the pad with a vertical velocity of ≤
0.1 m/s and horizontal velocity of ≤ 0.1 m/s.

4 MPC Strategy
To allow for a stable and reliable starship landing, an
MPC strategy that tracks an optimal path was precom-
puted using the batch approach for the nonlinear dy-
namic model. This strategy allows the system to guide
itself to a safe landing, even under unexpected condi-
tions like the high speed cross-winds that forced Mark
Wattney’s crew to leave him behind on the red planet in
The Martian.

The optimal reference trajectory was precomputed 15
seconds out (∆t = 0.1s) using the nonlinear dynam-
ics, system constraints, and landing pad as the terminal
set using the IPOPT optimization solver.

Next the MPC strategy took over, using a quadratic cost
function with terminal cost matrix P , stage cost matrix
Q, and input cost matrix R (Eq. 16). These cost matri-
ces apply increasing penalties to the cost function when
the states or inputs get further away from the reference
trajectory. This difference between state (zk) and ref-
erence state (ztraj−k) is ẑk and the difference between
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input (uk) and reference input (utraj−k) is ûk.

min
z0 , ... , zN , u0 , ... , uN−1

ẑTNP ẑN +
N−1∑
k=0

ẑTk Qẑk + ûTkRûk

subject to zk+1 = Azk +Buk + C

uMin ≤ uk ≤ uMax

zMin ≤ zk ≤ zMax

ẑk = ztraj−k − zk

ûk = utraj−k − uk

z0 = z(t)

zN = ztraj−N

(16)
By solving problem 16 at each time step, an optimal
next input and the projected states and inputs N steps
ahead are calculated. This approach aims for the refer-
ence trajectory value at time t + N as the terminal con-
straint for the receding horizon, and makes predictions
based on linear dynamics to allow for the use of quad-
prog to solve the optimization problem. After the opti-
mal next input is found, it is applied to the system and
the model evolves under nonlinear dynamics and envi-
ronmental disturbances to the next state, where the pro-
cess is repeated until the Starship lands. In a real world
scenario state estimators would provide feedback con-
trols through sensors located on the ship.

5 Results
Figures 2 and 3 show the rocket states during landing.
Although the landing was a success there is disagree-
ment between the predicted and actual states shown in
Figure 2. There is also a small amount of tracking error
between the optimal reference trajectory and the MPC
strategy solution shown in Figure 3.

The linearized dynamics used by the MPC strategy is the
cause of these errors. Specifically, the loss of the Fe ∗ θ
term causes the linearized dynamics to over or under-
compensate with horizontal thrusters when θ is nonzero.
This results in incorrect tracking of θ since the horizon-
tal thrusters affect the angular velocity of the rocket.

6 Conclusions
The combined approach presented in this paper was able
simulate Starship’s landing for a range of initial condi-
tions and disturbances. Of the initial conditions, only the
starting rocket angle θ and horizontal position x were
varied independently. When the rocket starting position

Figure 2: Closed Loop states versus Open Loop predictions
for θ, ω, h, and v.

Figure 3: Reference and actual trajectories.

was vertically aligned with the target it was able to land
successfully with θ between ±2 degrees and disturbance
forces up to 50 kN. With a θ of 0 degrees and a 4000 N
horizontal disturbance, the horizontal starting position
could be varied up to 60 m away from the target before
the algorithm could no longer find a feasible solution.
The greatest limitation of this method is that the optimal
path must keep θ small for the MPC solution to correctly
track it. This requires more thruster usage than a regular
rocket which would simply tilt its orientation to move
horizontally.
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