

Five Stage Pick and Place Robot
Controls Does Micro Final Project Report

Ross Alexander | Rebecca Schwartz | Jeremy Hamlin

May 15th, 2020

Controls Does Micro 2

Background and Motivation

With recent advances in pressure sensing technology for robotic manipulation of fragile objects,

our team originally intended to build a robot arm for dipping strawberries in chocolate. We

altered the scope of our project to focus only on the pick and place action of a robotic arm,

keeping in mind that pressure sensing could eventually be integrated. Our team is composed of

Mechanical MEng students focusing on the Control of Robotic and Autonomous Systems, so

completing a project within robotics made sense.

 The pick and place robot arm is an EEZYbotARM MK2, which is an open source 3D

printable robot. This robot was chosen because it has four degrees of freedom (DOF), uses off

the shelf motors, is relatively easy to construct, and has simplified gripper dynamics. The

mechanical design of this robot prevents the gripper from rotating about the y-axis. This

simplifies the grippers motion and control (Figure 1, 2).

Figure 1: 3D Model with Cartesian Coordinate System Reference

Figure 2: Gripper Independent of Y-axis Rotation

Controls Does Micro 3

 The pick and place robot is controlled by one Cypress PSOC 5LP microcontroller, which

receives serial commands from a LabVIEW user interface. Using the Programming Mode, the

user can create a custom pick and place trajectory from five save positions: pre-pick, pick, home

(central position), pre-place, and place (Figure 3). Note that at the pick and place positions, the

gripper goes to user defined close and open angles, respectively. Once those positions are saved,

the user can execute pick and place motion by either: directing the arm to a specified save point,

or starting an automation sequence which continuously directs the robot from Home Position →

Pre-Pick Position → Pick Position → Home Position → Pre-Place Position → Place Position and

then back to Home Position.

Figure 3: Example of the 5 Major Positions in the Pick-and-Place Sequence

Expected Technical Challenges

Software

The EEZYbotARM MK2 arm is designed to work with servo motors, meaning there is no

encoder for position feedback. We expected that one of our biggest challenges would be

accurately knowing the position of the robot arm in real time. With properly calibrated and

functional servo motors, we can be confident of the position of the arm in steady state, however

we have no feedback during arm motion. We brainstormed two methods for tackling this

challenge. The first was to measure the current draw of the motors to determine when they

arrived at the specified position. The second was incrementing the PWM by small changes so we

could be confident that the current PWM value gave a reasonable representation of the arms

current position. We would go on to use PWM incrementation in the form of speed control, as

the arm would overshoot its position target when the PWM values were changed directly. This is

explained further in the Speed Control section.

Controls Does Micro 4

Hardware

We expected we would have trouble gripping and picking up objects, due to the limited torque of

the motor and the mechanical design of the gripper. We also expected to have some difficulty

with 3D printing tolerances and the overall strength of the 3D printed parts. We also anticipated

having some difficulties drilling, hammering, and attaching the printed parts since they were

weak plastic filament.

After the quarantine started, we also realized getting hardware would be difficult since a lot of

stores closed. While it did not change our plans for printing, it definitely impacted our plans for

acquiring screws, filament, nuts and bolts.

Actual Technical Challenges
This section describes our technical solution, focusing on the PSOC code, LabVIEW code,

communications protocol, and hardware assembly.

Motor Control via PWM

The first challenge to setting up a pick and place robot is controlling the servo motors using the

PSOC. The robotic arm has four servo motors: three to control the arm’s motion, and one to

control the gripper. Each of these motors is controlled via a PWM signal with a 20 ms period and

a pulse width between ~0.5 – 2.5 ms. If the motors operate nominally, the motor position target

is represented by the pulse width of the PWM signal. The PWM signals are generated by the

PSOC and the pulse widths are controlled by changing a uint16 compare value that represents

the pulse width in microseconds.

Figure 4: PWM Signal Generation in PSOC Creator

To control the motors, a uint16 PWM value needs to be sent to the PSOC via a serial connection.

Since we have four motors, the PSOC needs to be able to receive four distinct PWM commands

via serial to control the robot.

Speed Control

Through experimentation we discovered the disadvantages of changing the PWM values of the

motors abruptly. The motors would move very quickly towards their intended target and often

overshoot due to the inertia generated during motion. To overcome this challenge, we developed

Controls Does Micro 5

a speed control system that split the PWM into a “current” value and a “target” value. When the

robot's position is changed, a new target value is sent to the PSOC, which increments the current

PWM value towards this target value. This allows us to control the speed of the motors in real

time and mitigate position overshoot. Speed control is implemented using a timer interrupt,

shown in the figure below.

Figure 5: Timer and Update PWM Interrupt for Speed Control

The timer is used to execute the UpdatePWM interrupt at 1 ms intervals. This interrupt

increments the current PWM values towards the target PWM values by ±1, corresponding to ±1

additional microsecond of pulse width. This enforces a constant PWM “speed” of 1 microsecond

per millisecond which corresponds to a motor speed of approximately 180 degrees per second.

Speed control was not used for the gripper motor because the inertia of the gripper was low

enough to prevent overshoot and the action was limited to “open fully” and “close fully”

commands.

PSOC Software Framework and Communications Protocol

To meet our project objectives, the PSOC needed to be able to receive PWM target values

through serial communication. To do this, a case structure was used to receive 11 different serial

commands that would affect 19 uint16 variables used to control the servo motors. The variables

and commands are summarized in the tables on the next page.

Controls Does Micro 6

Table 1: PWM uint16 Variables used for motor control

Variable Name Description (All uint16) Variable Name Description (All uint16)
PWM_1_Target; Target PWM value for motor 1 PWM_1_PrePick; Saved PWM values for

motor 1 Pre-Pick Position
PWM_2_Target; Target PWM value for motor 2 PWM_2_PrePick;

Saved PWM values for

motor 2 Pre-Pick Position
PWM_3_Target; Target PWM value for motor 3 PWM_3_PrePick; Saved PWM values for

motor 3 Pre-Pick Position
PWM_4_Target; Target PWM value for gripper

motor. This value is written

directly to the gripper PWM.

PWM_1_Place; Saved PWM values for

motor 1 Place Position

PWM_1_Current; Current PWM value sent to

motor 1 every loop iteration.

PWM_2_Place; Saved PWM values for

motor 2 Place Position
PWM_2_Current; Current PWM value sent to

motor 2 every loop iteration.

PWM_3_Place; Saved PWM values for

motor 3 Place Position
PWM_3_Current; Current PWM value sent to

motor 3 every loop iteration.

PWM_1_PrePlace;

Saved PWM values for

motor 1 Pre-Place Position
PWM_1_Pick; Saved PWM values for motor 1

Pick position

PWM_2_PrePlace; Saved PWM values for

motor 2 Pre-Place Position
PWM_2_Pick; Saved PWM values for motor 2

Pick position

PWM_3_PrePlace;

Saved PWM values for

motor 3 Pre-Place Position
PWM_3_Pick; Saved PWM values for motor 3

Pick position

Table 2: PSOC Commands

Command

uint8 trigger

value

Description

1 Set PWM_(1-3)_Target variables to the uint16 values received via serial

2 Set PWM_(1-4)_Current variables to the uint16 values received via serial. This is a

special case that bypasses the speed control and is used to directly control the motor

PWMs via serial.

3 Set PWM_(1-3)_PrePick variables to the uint16 values received via serial

4 Set PWM_(1-3)_Pick variables to the uint16 values received via serial

5 Set PWM_(1-3)_PrePlace variables to the uint16 values received via serial

6 Set PWM_(1-3)_Place variables to the uint16 values received via serial

7 Set PWM_(1-3)_Target variables to PWM_(1-3)_Pick values, set gripper PWM

[PWM_4_Target] to the uint16 value received via serial

8 Set PWM_(1-3)_Target variables to PWM_(1-3)_Place values, set gripper PWM

[PWM_4_Target] to the uint16 value received via serial

9 Set PWM_(1-3)_Target variables to PWM_(1-3)_PrePick values

10 Set PWM_(1-3)_Target variables to PWM_(1-3)_PrePlace values

12 Transmit out all variables, except PWM_4_Target, out via serial in uint8 format

Controls Does Micro 7

To summarize, the commands can be combined into the following categories:

● Commands [1,7,8,9,10] change the PWM target values

● Commands [3,4,5,6] save PWM values on the PSOC

● Command 2 directly sets the current PWM values of the motors

● Command 12 sends all PWM data out via serial

The overall framework of the PSOC code is presented in the state transition diagram shown

below.

Figure 6: PSOC State Transition Diagram

Each Block represents a state, with the green blocks representing the main loop while the dark

blue blocks are interrupts. All the commands are handled in the main loop using a case structure,

while serial communication and speed control are handled via interrupts. The program flows as

follows:

1. INIT: Turn on all hardware, set PWMs to safe initial values.

2. Main: continuously run the main loop writing current PWM values to the motors, if we

received a command, perform the specified action. Leave this state when an interrupt is

triggered or the PSOC shuts down.

3. Byte Received: If a byte is at the serial buffer, interrupt out and read all bytes until the

buffer is empty.

4. Command Received: When the number of bytes read by the Byte Received state is equal

to the size of the expected message, this interrupt is triggered where the data is parsed

based on the command value received.

Controls Does Micro 8

5. Update PWM: This is the highest priority interrupt which will trigger every 1 ms and

increment / decrement the current PWM values towards the target values by 1

microsecond of pulse width.

Challenges

The most challenging part of the PSOC code was setting up constant speed control using the

timer interrupt. Originally, we tried to include this in the main loop but we had issues because

the loop execution time would vary drastically depending on if we had a command. We settled

on using a timer interrupt so we could be sure to get accurate speed values in real time.

LabVIEW GUI and User Interface

To test our PSOC code, a LabVIEW VI was used to send each of the commands. However, this

VI was difficult to use and the primary purpose of our LabVIEW GUI is to present an intuitive

interface to the user. To make this interface, a new VI was created that uses buttons and sliders to

trigger specific commands on the PSOC. A description of the GUI and the button commands are

shown below:

Figure 7: LabVIEW GUI, Programming Mode

The figure above allows the user to enter “Programing Mode” which corresponds to

continuously sending command 2 to the PSOC which directly writes the current PWM values as

the data received. With the four sliders, the user can directly control the motors and move the

arm in real time. The purpose of this mode is to allow for the individual steps (pre-pick, pick,

pre-place, place) to be saved on the PSOC.

Figure 8: LabVIEW GUI, Saving Specified Trajectory Points

Controls Does Micro 9

The figure above shows the four buttons used to save the current slider values as the specified

trajectory points. Once all the values have been saved, the robotic arm can be operated using the

buttons shown in the figure below.

Figure 9: LabVIEW GUI, Automation Sequence

As seen in Figure 3, the automation sequence moves the robot from Home Position → Pre-Pick

Position → Pick Position → Home Position → Pre-Place Position → Place Position and then

back to home position. Alternatively, the user can use the five buttons on the right to move

directly to one of the specified positions. From this screen the user can also specify the closed

and open angle of the gripper during picking and placing.

LabVIEW Code Overview
The state transition diagram for the LabVIEW block diagram is shown below.

Figure 10: LabVIEW State Transition Diagram

Controls Does Micro 10

There are four states represented by the green blocks, and two case structures represented by the

blue blocks. The program flows as follows:

● INIT: Opens the serial port and sets default values.

● Main Loop: This state either sends out a command, or, if there is no command, polls the

PSOC for data using command 12. The send command decisions are based on buttons on

the GUI. For example, when “Go To Home Point” is pressed, the main loop executes

command 1 and sends the PWM target values for the home point.

● Programming loop: This state is entered when the user presses the “Enter Programing

Mode” button and holds the program in a timed loop. This loop continuously sends the

Current PWM values to the PSOC over serial.

● EXIT: This state closes the serial port and shuts down the program if the stop button is

pushed or if there is a serial error.

Challenges

The most difficult part was re-entering the programming mode after the user executes a save

command. This required the program to exit the Programming Loop, run though the Main Loop

once to send the save command, run though the main loop again to poll the PSOC for data to

verify that the save value was received, then re-enter the programming loop. This was done by

recording the last command and entering the programming loop if the last command was a save

and the PSOC had been polled for data. Another challenge was building front panel buttons to

work with our original “debug” LabVIEW VI. For all the GUI buttons, we used a case structure

to reset the button, set the send command flag true, and change the command to the appropriate

value. An example is shown below for the “Save as Place Point” button.

Figure 11: An Example of How Our VI Handles Button Presses

Hardware

As expected, we did have a bit of trouble with the gripper: it stalled out sometimes and its ability

to hold an object was unreliable. For sake of demonstration, we had the gripper pick and place a

tissue, which has an easy-to-hold rough surface with low weight and a relatable object for the

current global pandemic. We also had issues with the quality of the 3D printed parts, but we

were able to modify the parts after printing to satisfy our needs. With the tolerance of the 3D

Controls Does Micro 11

printer, some of the parts did not come out perfectly, resulting in ‘jerky’ motion that took a lot of

mechanical tweaking to mitigate.

We also did not realize going into the process that some of the parts were too large for

our simple 3D printer we have on-hand, so we had to redesign some of the parts so they could be

printed on a smaller printing platform. We also ran into other snags with the printer which

caused setbacks, like running out of filament after printing the gripper, and a clogged nozzle that

needed replacing.

And of course, acquiring the right screws, nuts, wires, and bolts was quite a challenge

given the current global pandemic with enormous wait lines and inventory shortages at every

hardware store. Even though this was not a hardware project, we believed having an actual

robotic arm was important to demonstrate our work, and we were lucky enough to have access to

our own 3D printer, oscilloscope, power supply, and more.

Summary and Reflections: What We Would Do Differently
If we were to redo this project, we would implement pressure sensing in order to prevent the

gripper from crushing fragile objects. We would also redesign the gripper to be bigger and use a

gripper motor with higher holding torque.

We would also use a higher quality 3D printer with better tolerances and a larger

platform to ensure we would not need to redesign any parts. This would cause the arm to run

smoother and put less strain on the motors.

Regarding the PSOC and LabVIEW code, the majority of it was created as the project

evolved. This resulted in a system with a lot of unnecessary commands. If given another

opportunity we would simplify the relationship between the PSOC and LabVIEW. One option

would be to simplify the PSOC to only accept 3 commands: change target PWM value, poll data,

change current PWM value. We would then use LabVIEW to record the save positions and the

PSOC solely for speed control. Another option would be to record all save positions on the

PSOC and include the automation command. This would allow the PSOC to run the entire code

with just a serial terminal or with LabVIEW using the GUI buttons as direct commands. Both of

these options would reduce the interdependence between LabVIEW and PSOC, allowing the

programming tasks to be developed independently, and making it easier to interface part of the

code with another system.

If we were to continue this project, we would focus on improving the “resolution” of the

automation trajectory by adding additional steps to our automation process. For example, we

could use a program like MATLAB to generate an optimum trajectory which could be converted

to a series of points. LabVIEW could then be used to send these points as PWM targets to the

PSOC which could track the trajectory using speed control.

Controls Does Micro 12

Appendix and Attachments
• Presentation: Controls Does Micro.pptx

o Includes videos and diagrams embedded within

• User Interface: Controls_Does_Micro_VI.zip

o The top VI is Controls-Does-Micro-Pick-And-Place.vi

• PSOC Code: Workspace_Controls_Does_Micro.zip

o File location is /ME135_325/ME135_235.cywrk

o The project to flash is CommandInterpreter_Copy_01

Multitasking

